The air-liquid interface culture of the mechanically isolated seminiferous tubules embedded in agarose or alginate improves in vitro spermatogenesis at the expense of attenuating their integrity

In Vitro Cellular & Developmental Biology - Animal(2020)

引用 11|浏览3
暂无评分
摘要
Optimization of tissue culture systems able to complete male germ cell maturation to post-meiotic stages is considered as an important matter in reproductive biology. Considering that hypoxia is one of the factors limiting the efficiency of organ culture, the aim of this study was to use isolated seminiferous tubules (STs), having more surface and less thickness, in an organotypic culture system in order to improve oxygen diffusion and reduce hypoxia. The mechanically separated STs embedded in agarose or alginate and 1–3-mm 3 testicular tissue fragments of 3 adult mice were separately placed on the flat surface of agarose gel that was half-soaked in the medium. Survival and differentiation of germ cells using PLZF and SCP3 markers, identity of Sertoli cell using GATA4, cell proliferation with the Ki67 marker, and ST integrity using a ST scoring were evaluated up to 36 d at different culture times, each corresponding to the duration of one spermatogenic cycle. We observed a significantly reduced ST integrity in STs embedded in agarose or alginate on day 9 (versus tissue fragments p ≤ 0.05). There was no difference in the number of PLZF-positive cells between groups, but the number of SCP3 (in all-time points) and GATA4-positive cells was significantly higher in the culture of embedded STs. Although embedding STs can be useful for the progress of in vitro spermatogenesis, it makes them sensitive to degeneration. Further improvements are required to modify the air-liquid interface method to maintain ST integrity.
更多
查看译文
关键词
In vitro spermatogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要