Annexin B12 Trimer Formation is Governed by a Network of Protein-Protein and Protein-Lipid Interactions

SCIENTIFIC REPORTS(2020)

引用 4|浏览11
暂无评分
摘要
Membrane protein oligomerization mediates a wide range of biological events including signal transduction, viral infection and membrane curvature induction. However, the relative contributions of protein-protein and protein-membrane interactions to protein oligomerization remain poorly understood. Here, we used the Ca 2+ -dependent membrane-binding protein ANXB12 as a model system to determine the relative contributions of protein-protein and protein-membrane interactions toward trimer formation. Using an EPR-based detection method, we find that some protein-protein interactions are essential for trimer formation. Surprisingly, these interactions are largely hydrophobic, and they do not include the previously identified salt bridges, which are less important. Interfering with membrane interaction by mutating selected Ca 2+ -ligands or by introducing Lys residues in the membrane-binding loops had variable, strongly position-dependent effects on trimer formation. The strongest effect was observed for the E226Q/E105Q mutant, which almost fully abolished trimer formation without preventing membrane interaction. These results indicate that lipids engage in specific, trimer-stabilizing interactions that go beyond simply providing a concentration-enhancing surface. The finding that protein-membrane interactions are just as important as protein-protein interactions in ANXB12 trimer formation raises the possibility that the formation of specific lipid contacts could be a more widely used driving force for membrane-mediated oligomerization of proteins in general.
更多
查看译文
关键词
Biophysics,Structural biology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要