Robust Out-of-distribution Detection in Neural Networks

arxiv(2020)

引用 32|浏览77
暂无评分
摘要
Detecting anomalous inputs is critical for safely deploying deep learning models in the real world. Existing approaches for detecting out-of-distribution (OOD) examples work well when evaluated on natural samples drawn from a sufficiently different distribution than the training data distribution. However, in this paper, we show that existing detection mechanisms can be extremely brittle when evaluating on inputs with minimal adversarial perturbations which don't change their semantics. Formally, we introduce a novel and challenging problem, Robust Out-of-Distribution Detection, and propose an algorithm that can fool existing OOD detectors by adding small perturbations to the inputs while preserving their semantics and thus the distributional membership. We take a first step to solve this challenge, and propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples. Our method can be flexibly combined with, and render existing methods robust. On common benchmark datasets, we show that ALOE substantially improves the robustness of state-of-the-art OOD detection, with 58.4% AUROC improvement on CIFAR-10 and 46.59% improvement on CIFAR-100. Finally, we provide theoretical analysis for our method, underpinning the empirical results above.
更多
查看译文
关键词
neural networks,detection,out-of-distribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要