Measurement of S34(He3,p)Cl36 cross sections for nuclide enrichment in the early solar system

PHYSICAL REVIEW C(2020)

引用 4|浏览9
暂无评分
摘要
Isotopic studies of meteorites have provided ample evidence for the presence of short-lived radionuclides (SLRs) with half-lives of less than 100 Myr at the time of the formation of the solar system. The origins of all known SLRs are heavily debated and remain uncertain, but the plausible scenarios can be broadly separated into either local production or outside injection of stellar nucleosynthesis products. The SLR production models are limited in part by reliance on nuclear theory for modeling reactions that lack experimental measurements. Reducing uncertainty on critical reaction cross sections can both enable more precise predictions and provide constraints on physical processes and environments in the early solar system. This goal led to the start of a campaign for measuring production cross sections for the (SLRCl)-Cl- 36, where Bowers et al. found higher cross sections for the S-33(alpha, p) Cl-36 reaction than were predicted by Hauser-Feshbach based nuclear reaction codes TALYS and NON-SMOKER. This prompted re-measurement of the reaction at five new energies within the energy range originally studied, resulting in data slightly above but in agreement with TALYS. Following this, efforts began to measure cross sections for the next most significant reaction for Cl-36 production, S-34(He-3, p)Cl- 36. Activations were performed to produce nine samples between 1.11 MeV/nucleon and 2.36 MeV/nucleon. These samples were subsequently measured with accelerator mass spectrometry at two labs. The resulting data suggest a sharper-than-expected rise in cross sections with energy, with peak cross sections up to 30% higher than predictions from TALYS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要