Characterizing Single-Molecule Conformational Changes Under Shear Flow With Fluorescence Microscopy

JOVE-JOURNAL OF VISUALIZED EXPERIMENTS(2020)

引用 1|浏览8
暂无评分
摘要
Single-molecule behavior under mechanical perturbation has been characterized widely to understand many biological processes. However, methods such as atomic force microscopy have limited temporal resolution, while Forster resonance energy transfer (FRET) only allow conformations to be inferred. Fluorescence microscopy, on the other hand, allows real-time in situ visualization of single molecules in various flow conditions. Our protocol describes the steps to capture conformational changes of single biomolecules under different shear flow environments using fluorescence microscopy. The shear flow is created inside microfluidic channels and controlled by a syringe pump. As demonstrations of the method, von Willebrand factor (VWF) and lambda DNA are labeled with biotin and fluorophore and then immobilized on the channel surface. Their conformations are continuously monitored under variable shear flow using total internal reflection (TIRF) and confocal fluorescence microscopy. The reversible unraveling dynamics of VWF are useful for understanding how its function is regulated in human blood, while the conformation of lambda DNA offers insights into the biophysics of macromolecules. The protocol can also be widely applied to study the behavior of polymers, especially biopolymers, in varying flow conditions and to investigate the rheology of complex fluids.
更多
查看译文
关键词
Bioengineering,Issue 155,von Willebrand factor,lambda DNA,microfluidics,shear flow,TIRF,confocal fluorescence microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要