Determination of safe storage moisture content of soybean expeller by means of sorption isotherms and product respiration

G. Maciel, D.A. de la Torre, L.M. Cardoso,M.G. Cendoya,J.R. Wagner,R.E. Bartosik

Journal of Stored Products Research(2020)

引用 7|浏览1
暂无评分
摘要
Soybean expeller (SBE) is rich in protein and has a relatively high and variable oil composition (7–15%). With the increasing use of the SBE for animal nutrition there arose a need for understanding the quality deterioration during storage. The goal of this research was to determine the storability of SBE by developing a model for predicting its equilibrium moisture content (EMC), using the EMC model to determine its safe storage moisture content (SSMC), and by measuring dry matter loss (DML) for SBE incubated at 10 °C and 20 °C for 46 days. Samples of SBE with different residual oil contents were collected and an EMC experiment was carried out to determine the sorption isotherms at 65, 70, 75 and 80% RH; at 10 and 20 °C for samples with 6.2, 9.6 and 15.3% oil content. A second set of samples was used for determining the respiration rate at 20 °C. The Enhanced Halsey model was fitted to the SBE EMC/equilibrium relative humidity (ERH) data and it was established that the residual oil content significantly affected the sorption isotherms. By considering an ERH of 67% or below to be a safe storage condition, the SBE should be stored at or below 12.2% moisture content (m.c.) if the temperature is at or below 20 °C and an the oil content is 7%. However, according to the respiration experiments it would be safe to store SBE up to 16% m.c. (equivalent to 75% ERH). Considering a DML limit of 0.1%, the allowable storage time of SBE at a m.c. lower than 15.4% (ERH of 75%) was at least 46 days. The widely accepted practice of incorporating the gums present in the extracted oil, diluted in water, back into the SBE should be avoided since it increases the m.c. of the product and substantially reduces the allowable storage time.
更多
查看译文
关键词
Equilibrium moisture relationships,Safe storage moisture content,Residual oil content,Respiration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要