A fast and non-iterative zonal estimation for the nonrectangulardata in the transparent surfacereconstruction from polarization analysis

Applied Optics(2020)

引用 0|浏览13
暂无评分
摘要
In the method of surface reconstruction from polarization, the reconstructed area is generally non-rectangular and contains a large number of sampling points. There is a difficulty that the coefficient matrix in front of the height vector changes with the shape of the measured data when using the zonal estimation. The traditional iterative approaches consume more time for the reconstruction of this type of data. This paper presents a non-iterative zonal estimation to reduce the computing time and to accurately reconstruct the surface. The index vector is created according to the positions of both the valid and invalid elements in the difference and gradient matrices. It is used to obtain the coefficient matrix corresponding to the general data. The heights in the non-rectangular area are calculated non-iteratively by the least squares method. At the same time, the sparse matrix is applied for handling the large-scale data quickly. The simulation and the experiment are designed to verify the feasibility of the proposed method. The results show that the proposed method is highly efficient and accurate in the reconstruction of the non-rectangular data. (C) 2020 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要