A Quadratic Lower Bound for Algebraic Branching Programs

arxiv(2019)

引用 0|浏览55
暂无评分
摘要
We show that any Algebraic Branching Program (ABP) computing the polynomial $\sum_{i = 1}^n x_i^n$ has at least $\Omega(n^2)$ vertices. This improves upon the lower bound of $\Omega(n\log n)$, which follows from the classical result of Baur and Strassen [Str73, BS83], and extends the results in [K19], which showed a quadratic lower bound for \emph{homogeneous} ABPs computing the same polynomial. Our proof relies on a notion of depth reduction which is reminiscent of similar statements in the context of matrix rigidity, and shows that any small enough ABP computing the polynomial $\sum_{i=1}^n x_i^n$ can be depth reduced to essentially a homogeneous ABP of the same size which computes the polynomial $\sum_{i = 1}^n x_i^n + \epsilon(x_1, \ldots, x_n)$, for a structured "error polynomial" $\epsilon(x_1, \ldots, x_n)$. To complete the proof, we then observe that the lower bound in [K19] is robust enough and continues to hold for all polynomials $\sum_{i = 1}^n x_i^n + \epsilon(x_1, \ldots, x_n)$, where $\epsilon(x_1, \ldots, x_n)$ has the appropriate structure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要