The Spatial and Temporal Variability of Mn Speciation in the Coastal Northwest Atlantic Ocean

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS(2020)

引用 15|浏览7
暂无评分
摘要
Manganese (Mn) is distributed widely throughout the global ocean, where it cycles between three oxidation states that each play important biogeochemical roles. The speciation of Mn in seawater was previously operationally defined on filtration, with soluble Mn presumed to be Mn(II) and solid-phase Mn as Mn(III/IV) oxides. Recent findings of abundant soluble Mn(III) complexes (Mn(III)-L) highlights the need to reexamine the redox cycling of Mn, as these complexes can donate or accept electrons. To better understand the complex cycling of Mn in coastal waters, the distribution of Mn species at four Northwest Atlantic sites with different characteristics was examined. Diurnal influences on Mn speciation were investigated within a productive site. At all sites, Mn(III)-L complexes dominated, particularly in surface waters, and Mn oxides were low in abundance in surface waters but high in bottom waters. Despite intrasite similarities, Mn speciation was highly variable between our stations, emphasizing the diverse processes that impact Mn redox. Diel Mn measurements revealed that the cycling of Mn is also highly variable over time, even on time scales as short as hours. We observed a change of over 100 nM total Mn over 17 hrs and find that speciation changed drastically. These changes could include contributions from biological, light-mediated, and/or abiotic mechanisms but more likely point to the importance of lateral mixing at coastal sites. This exploration demonstrates the spatial and temporal variability of the Mn redox cycle and indicates that single timepoint vertical profiling is not sufficient when describing the geochemistry of dynamic coastal systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要