Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms.

SMALL(2020)

引用 13|浏览13
暂无评分
摘要
Light coupling with patterned subwavelength hole arrays induces enhanced transmission supported by the strong surface plasmon mode. In this work, a nanostructured plasmonic framework with vertically built-in nanohole arrays at deep-subwavelength scale (6 nm) is demonstrated using a two-step fabrication method. The nanohole arrays are formed first by the growth of a high-quality two-phase (i.e., Au-TiN) vertically aligned nanocomposite template, followed by selective wet-etching of the metal (Au). Such a plasmonic nanohole film owns high epitaxial quality with large surface coverage and the structure can be tailored as either fully etched or half-way etched nanoholes via careful control of the etching process. The chemically inert and plasmonic TiN plays a role in maintaining sharp hole boundary and preventing lattice distortion. Optical properties such as enhanced transmittance and anisotropic dielectric function in the visible regime are demonstrated. Numerical simulation suggests an extended surface plasmon mode and strong field enhancement at the hole edges. Two demonstrations, including the enhanced and modulated photoluminescence by surface coupling with 2D perovskite nanoplates and the refractive index sensing by infiltrating immersion liquids, suggest the great potential of such plasmonic nanohole array for reusable surface plasmon-enhanced sensing applications.
更多
查看译文
关键词
modulated photoluminescence (PL),plasmonic nanoholes (NHs),refractive index (RI) sensing,surface plasmons (SPs),titanium nitride (TiN)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要