Seasonal shifts in the assembly dynamics of benthic macroinvertebrate and diatom communities in a subtropical river.

Ecology and evolution(2020)

引用 15|浏览3
暂无评分
摘要
Identifying seasonal shifts in community assembly for multiple biological groups is important to help enhance our understanding of their ecological dynamics. However, such knowledge on lotic assemblages is still limited. In this study, we used biological traits and functional diversity indices in association with null model analyses to detect seasonal shifts in the community assembly mechanisms of lotic macroinvertebrates and diatoms in an unregulated subtropical river in China. We found that functional composition and functional diversity (FRic, FEve, FDis, MNN, and SDNN) showed seasonal variation for macroinvertebrate and diatom assemblages. Null models suggested that environmental filtering, competitive exclusion, and neutral process were all important community assembly mechanisms for both biological groups. However, environmental filtering had a stronger effect on spring macroinvertebrate assemblages than autumn assemblages, but the effect on diatom assemblages was the same in both seasons. Moreover, macroinvertebrate and diatom assemblages were shaped by different environmental factors. Macroinvertebrates were filtered mainly by substrate types, velocity, and CODMn, while diatoms were mainly shaped by altitude, substrate types, and water quality. Therefore, our study showed (a) that different biological assemblages in a river system presented similarities and differences in community assembly mechanisms, (b) that multiple processes play important roles in maintaining benthic community structure, and (c) that these patterns and underlying mechanisms are seasonally variable. Thus, we highlight the importance of exploring the community assembly mechanisms of multiple biological groups, especially in different seasons, as this is crucial to improve the understanding of river community changes and their responses to environmental degradation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要