Morbigenous brain region and gene detection with a genetically evolved random neural network cluster approach in late mild cognitive impairment.

Xia-An Bi,Yingchao Liu, Yiming Xie,Xi Hu,Qinghua Jiang

Bioinformatics (Oxford, England)(2020)

引用 27|浏览39
暂无评分
摘要
MOTIVATION:The multimodal data fusion analysis becomes another important field for brain disease detection and increasing researches concentrate on using neural network algorithms to solve a range of problems. However, most current neural network optimizing strategies focus on internal nodes or hidden layer numbers, while ignoring the advantages of external optimization. Additionally, in the multimodal data fusion analysis of brain science, the problems of small sample size and high-dimensional data are often encountered due to the difficulty of data collection and the specialization of brain science data, which may result in the lower generalization performance of neural network. RESULTS:We propose a genetically evolved random neural network cluster (GERNNC) model. Specifically, the fusion characteristics are first constructed to be taken as the input and the best type of neural network is selected as the base classifier to form the initial random neural network cluster. Second, the cluster is adaptively genetically evolved. Based on the GERNNC model, we further construct a multi-tasking framework for the classification of patients with brain disease and the extraction of significant characteristics. In a study of genetic data and functional magnetic resonance imaging data from the Alzheimer's Disease Neuroimaging Initiative, the framework exhibits great classification performance and strong morbigenous factor detection ability. This work demonstrates that how to effectively detect pathogenic components of the brain disease on the high-dimensional medical data and small samples. AVAILABILITY AND IMPLEMENTATION:The Matlab code is available at https://github.com/lizi1234560/GERNNC.git.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要