Genome based safety assessment for Bacillus coagulans strain LBSC (DSM 17654) for probiotic application.

International Journal of Food Microbiology(2020)

引用 31|浏览7
暂无评分
摘要
The present study on Bacillus coagulans strain LBSC (DSM 17654) describes the use of whole genome sequencing, in correlation with the phenotypic properties to assess the safety of the strain. Analysis of the 16S rRNA sequence of the B. coagulans strain LBSC (DSM 17654), showed 100% homology with 99% coverage with B. coagulans strain HM-08. BLAT (BLAST Like Analysis Tool) analysis for whole genome comparison with B. coagulans ATCC 7050, B. coagulans HM-08 and B. coagulans Slac showed 96%, 99% and 99% sequence identity respectively. Whole genome sequencing results demonstrated a single scaffold of 36,35,902 bp and 3331 coding sequences. Gene ontology segregated the proteins as those with molecular function, cellular component and biological process of the predicted genes from assembled genome. Risk associated sequences like antibiotic resistance genes, biogenic amine producing genes, virulence factor genes and other safety related genes were identified with focus on horizontal gene transfer and its non-functionality. The absence of mobile elements in the vicinity of the genes, render it non-transferable and non-toxic phenotypic properties confirm the non-functionality of the genes. Absence of functional genes of concern and confirmation of absence of mobile elements in the vicinity of other non-clinically significant genes indicated no safety concern. The absence of complete and functional prophage sequences which are deleterious for the genome stability and presence of CRISPR system which are advantageous for genome stability by acting as a barrier to entry of foreign DNA elements indicated the stability of the genome. The molecular approach used in this study satisfies the requirements for the safety assessment of the probiotic strain which could indicate it to be potentially safe.
更多
查看译文
关键词
Genome sequence,Taxonomy,Genome stability,Antibiotic resistance,Virulence factors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要