Consac: Robust Multi-Model Fitting By Conditional Sample Consensus

2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)(2020)

引用 55|浏览214
暂无评分
摘要
We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements. Applications include finding multiple vanishing points in man-made scenes, fitting planes to architectural imagery, or estimating multiple rigid motions within the same sequence. In contrast to previous works, which resorted to hand-crafted search strategies for multiple model detection, we learn the search strategy from data. A neural network conditioned on previously detected models guides a RANSAC estimator to different subsets of all measurements, thereby finding model instances one after another. We train our method supervised as well as self-supervised. For supervised training of the search strategy, we contribute a new dataset for vanishing point estimation. Leveraging this dataset, the proposed algorithm is superior with respect to other robust estimators as well as to designated vanishing point estimation algorithms. For self-supervised learning of the search, we evaluate the proposed algorithm on multi-homography estimation and demonstrate an accuracy that is superior to state-of-the-art methods.
更多
查看译文
关键词
multiple rigid motions,hand-crafted search strategies,multiple model detection,search strategy,neural network,detected models guides,RANSAC estimator,model instances,supervised training,robust estimator,designated vanishing point estimation algorithms,self-supervised learning,multihomography estimation,robust multimodel,conditional sample consensus,multiple parametric models,noisy measurements,multiple vanishing points,man-made scenes,fitting planes,architectural imagery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要