Hardware/Software Co-verification Using Path-based Symbolic Execution

arxiv(2020)

引用 0|浏览18
暂无评分
摘要
Conventional tools for formal hardware/software co-verification use bounded model checking techniques to construct a single monolithic propositional formula. Formulas generated in this way are extremely complex and contain a great deal of irrelevant logic, hence are difficult to solve even by the state-of-the-art Satis ability (SAT) solvers. In a typical hardware/software co-design the firmware only exercises a fraction of the hardware state-space, and we can use this observation to generate simpler and more concise formulas. In this paper, we present a novel verification algorithm for hardware/software co-designs that identify partitions of the firmware and the hardware logic pertaining to the feasible execution paths by means of path-based symbolic simulation with custom path-pruning, property-guided slicing and incremental SAT solving. We have implemented this approach in our tool COVERIF. We have experimentally compared COVERIF with HW-CBMC, a monolithic BMC based co-verification tool, and observed an average speed-up of 5X over HW-CBMC for proving safety properties as well as detecting critical co-design bugs in an open-source Universal Asynchronous Receiver Transmitter design and a large SoC design.
更多
查看译文
关键词
execution,hardware/software,co-verification,path-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要