RipTide Ultra High-Throughput Rapid DNA Library Preparation for Next Generation Sequencing.

Journal of biomolecular techniques : JBT(2019)

引用 1|浏览1
暂无评分
摘要
Whole Genome Shotgun Sequencing has become the tool of choice for microbial genome analysis. Rapidly declining costs of sequencing, data analysis, data storage and database access will continue to drive adoption. Library construction has not kept pace with these advancements, with costs of preparing a next generation sequencing (NGS) library often exceeding the cost of sequencing. Popular methods of library construction for NGS include fragmentation, end-repair and adapter ligation, and transposase-mediated adapter insertion. The Riptide High Throughput Rapid DNA Library Prep is distinctly different in its approach because it relies on polymerase-mediated primer extension for library preparation. The initial step of the prep, involving primer extension with barcoded random primers, is performed in a 96-well plate. Each well of the plate contains primers with a unique barcode; consequently, the library generated from each well is uniquely identifiable and can be bioinformatically traced back to the original sample after sequencing. Following this step, the primer extension products are combined into one pool and all subsequent steps, including second strand synthesis and PCR, are performed with the single pool. The library prep is fast, easily automatable and can be tuned to genomes of high and low GC content. With automation, 960 samples can be processed in a single day. The technology will aid genetic research by helping to increase sample throughput and by reducing processing steps and operating costs. Presented here is RipTide High Throughput Rapid DNA Library Prep sequencing data generated from multiple microbial genomes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要