Multiple Myeloma Pathogenesis: The Role Of Junb In Bone Marrow Angiogenesis

BLOOD(2019)

引用 1|浏览87
暂无评分
摘要
A significant increase in bone marrow (BM) angiogenesis represents a key event in early, microenvironment-dependent, multiple myeloma (MM). Angiogenic growth factor- and cytokine- production and secretion is a complex process regulated by a plethora of transcription factors (TFs). Over the past years, members of the AP-1 family of TFs have emerged as potential new therapeutic targets. Our recent work demonstrated for the first time a pivotal role for the AP-1 family member JunB in MM pathogenesis (Fan et al., 2017). Whether JunB also contributes to MM BM angiogenesis is currently unknown. In silico and immunohistochemical analyses revealed a correlative increase of JunB and angiogenic growth factors in samples isolated from healthy donors to MGUS and MM patients; and a decrease in samples isolated from patients with plasma cell leukemia. These data were supported by the utilization of an innovative in vivo MM model of clonal evolution. Specifically, JunB as well as selected angiogenic factors were significantly increased in tumor cell clones at primary sites (bone chips) versus tumor cell clones at metastatic (distant BM) sites, as evidenced by whole exome and RNA sequencing. Functionally, doxycyclin- induced inhibition of stroma cell: MM cell co-culture- as well as of IL-6- mediated JunB upregulation in TetR-shJunB/ MM.1S cells significantly reduced production and secretion of angiogenic factors; and consequently inhibited in vitro angiogenesis. Conversely, 4-hydroxytamoxifen (4-OHT)-mediated upregulation of JUNB activity in JUNB-ER/MM cells strongly increased the expression and secretion of angiogenic factors and in vitro angiogenesis. The interaction of JunB with angiogenic factor- encoding DNA in MM cells was further confirmed utilizing chromatin immunoprecipitation (ChIP)- sequencing. Finally, treatment with doxycycline effectively inhibited JunB levels and consistently reduced microvessel density in immunodeficient NSG mice inoculated with TetR-shJUNB/ MM.1S, but not TetR-SCR/ MM.1S. In conclusion, our findings demonstrate a pivotal role of JUNB in MM BM angiogenesis; they thereby provide further evidence that JUNB is a promising therapeutic target particularly in early MM.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要