Effects of Angiotensin-(1-7) and Angiotensin II on Acetylcholine-Induced Vascular Relaxation in Spontaneously Hypertensive Rats.

OXIDATIVE MEDICINE AND CELLULAR LONGEVITY(2019)

引用 17|浏览23
暂无评分
摘要
Endothelial dysfunction of small arteries occurs in patients with hypertension and in various hypertensive models. Endothelial function is usually evaluated by the degree of acetylcholine- (ACh-) induced vascular relaxation. Our previous study has found that compared to Wistar-Kyoto rats (WKY), ACh-induced vasodilatation was attenuated significantly in the mesenteric artery (MA), coronary artery (CA), and pulmonary artery (PA) of spontaneously hypertensive rats (SHR). This study investigated the influence of angiotensin- (Ang-) (1-7) and Ang II on blood pressure and ACh-induced vascular relaxation, as well as their interactive roles and downstream signal pathways in SHR and WKY. Intravenous injection of Ang II significantly increased, while Ang-(1-7) decreased the mean arterial pressure (MAP) in SHR. Ang-(1-7) improved ACh-induced relaxation in the MA, CA, and PA of SHR, while Ang II further attenuated it, which were inhibited by pretreatment with Mas receptor antagonist A-779 or AT(1) receptor antagonist losartan, respectively. Ang-(1-7) decreased the basal arterial tension, and Ang II induced great vasoconstriction in SHR. Pretreatment with Ang-(1-7) inhibited the Ang II-induced pressor response, vasoconstriction, and the effects on ACh-induced relaxation in SHR. AT(1) receptor expression was higher, while nitric oxide (NO), cGMP, and protein kinase G (PKG) levels of arteries were lower in SHR than in WKY. Ang II decreased, while Ang-(1-7) increased, the levels of NO, cGMP, and PKG of arteries. In addition, pretreatment with Ang-(1-7) inhibited the Ang II-induced reduction of NO, cGMP, and PKG in SHR. These results indicate that the activation of the Mas receptor by Ang-(1-7) can improve endothelial function and decrease MAP in SHR and inhibit the deteriorative effect of Ang II on endothelial function through the NO-cGMP-PKG pathway.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要