A new culture-based method for rapid identification of microorganisms in polymicrobial blood cultures by MALDI-TOF MS

BMC Microbiology(2019)

引用 22|浏览7
暂无评分
摘要
Background The application of matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS) to microbial identification has allowed the development of rapid methods for identification of microorganisms directly in positive, blood cultures (BCs). These methods can yield accurate results for monomicrobial BCs, but often fail to identify multiple microorganisms in polymicrobial BCs. The present study was aimed at establishing a rapid and simple method for identification of bacteria and yeast in polymicrobial BCs from patients with bloodstream infection. Results The rapid method herein proposed is based on short-term culture in liquid media allowing selective growth of microorganisms recovered from polymicrobial BCs, followed by rapid identification by MALDI-TOF MS. To evaluate the accuracy of this method, 56 polymicrobial BCs were comparatively analyzed with the rapid and routine methods. The results showed concordant identification for both microbial species in 43/50 (86%) BCs containing two different microorganisms, and for two microbial species in six BCs containing more than two different species. Overall, 102/119 (85.7%) microorganisms were concordantly identified by the rapid and routine methods using a cut-off value of 1.700 for valid identification. The mean time to identification after BC positivity was about 4.2 h for streptococci/enterococci, 8.7 h for staphylococci, 11.1 h for Gram-negative bacteria, and 14.4 h for yeast, allowing a significant time saving compared to the routine method. Conclusions The proposed method allowed rapid and reliable microbial identification in polymicrobial BCs, and could provide clinicians with timely, useful information to streamline empirical antimicrobial therapy in critically ill patients.
更多
查看译文
关键词
Bloodstream infection, Polymicrobial blood culture, MALDI-TOF MS, Rapid identification, Selective media
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要