Metal-Layer Assisted Growth of Ultralong Quasi-2D MOF Nanoarrays on Arbitrary Substrates for Accelerated Oxygen Evolution.

SMALL(2019)

引用 48|浏览6
暂无评分
摘要
Controlled growth of metal-organic frameworks (MOFs) nanocrystals on requisite surfaces is highly desired for myriad applications related to catalysis, energy, and electronics. Here, this challenge is addressed by overlaying arbitrary surfaces with a thermally evaporated metal layer to enable the well-aligned growth of ultralong quasi-2D MOF nanoarrays comprising cobalt ions and thiophenedicarboxylate acids. This interfacial engineering approach allows preferred chelation of carboxyl groups in the ligands with the metal interlayers, thereby making possible the fabrication and patterning of MOF nanoarrays on substrates of any materials or morphologies. The MOF nanoarrays grown on porous metal scaffolds demonstrate high electrocatalytic capability for water oxidation, exhibiting a small overpotential of 270 mV at 10 mA cm(-2), or 317 mV at 50 mA cm(-2) as well as negligible decay of performance within 30 h. The enhanced performance stems from the improved electron and ion transport in the hierarchical porous nanoarrays consisting of in situ formed oxyhydroxide nanosheets in the electrochemical processes. This approach for mediating the growth of MOF nanoarrays can serve as a promising platform for diverse applications.
更多
查看译文
关键词
electrocatalysts,interface engineering,metal-organic frameworks,nanoarrays,oxygen evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要