Quantum simulation by qubitization without Toffoli gates

arxiv(2019)

引用 0|浏览0
暂无评分
摘要
Qubitization is a modern approach to estimate Hamiltonian eigenvalues without simulating its time evolution. While in this way approximation errors are avoided, its resource and gate requirements are more extensive: qubitization requires additional qubits to store information about the Hamiltonian, and Toffoli gates to probe them throughout the routine. Recently, it was shown that storing the Hamitlonian in a unary representation can alleviate the need for such gates in one of the qubitization subroutines. Building on that principle, we develop an entirely new decomposition of the entire algorithm: without Toffoli gates, we can encode the Hamiltonian into qubits within logarithmic depth.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要