Ordered Memory.

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019)(2019)

Cited 23|Views9
No score
Abstract
Stack-augmented recurrent neural networks (RNNs) have been of interest to the deep learning community for some time. However, the difficulty of training memory models remains a problem obstructing the widespread use of such models. In this paper, we propose the Ordered Memory architecture. Inspired by Ordered Neurons (Shen et al., 2018), we introduce a new attention-based mechanism and use its cumulative probability to control the writing and erasing operation of the memory. We also introduce a new Gated Recursive Cell to compose lower-level representations into higher-level representation. We demonstrate that our model achieves strong performance on the logical inference task (Bowman et al., 2015)and the ListOps (Nangia and Bowman, 2018) task. We can also interpret the model to retrieve the induced tree structure, and find that these induced structures align with the ground truth. Finally, we evaluate our model on the Stanford SentimentTreebank tasks (Socher et al., 2013), and find that it performs comparatively with the state-of-the-art methods in the literature.
More
Translated text
Key words
memory
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined