Scalable three-dimensional Ni3P-based composite networks for flexible asymmertric supercapacitors

CHEMICAL ENGINEERING JOURNAL(2020)

引用 22|浏览39
暂无评分
摘要
Flexible energy storage devices are of great importance in future wearable electronics. To achieve the popularization of these flexible equipments, it is urgent to develop proper productive method for easily scaling up high performance flexible electrode materials. Herein, a three-dimensional nano-network composite material based on Ni3P is designed on flexible carbon felt (CF). The network induced by the introduction of sulfonated polystyrene combines advantages of excellent redox ability of the Ni3P, great conductivity of NiCo alloy and fast electric double layer contribution of carbon. It shows a great energy storage performance and an excellent balance between areal and gravimetric capacitance (1.76 F cm(-2) and 1048 F g(-1)), which are beneficial to the actual application. Besides, this CF@NiCoNiPC can be easily produced in a large-scale due to the simple and low-cost synthetic method. The CF@NiCoNiPC can be further fabricated into an asymmetric supercapacitor (ASC), which demonstrates an excellent capacitance of 516.7 mF cm(-2) (170.5 F g(-1)) and long-term stability of 25,000 charging and discharging cycles (83% retentions). Excitingly, the ASC presents good mechanical performance with 92% capacitance retention after 1000 bending cycles. Three tandem ASCs can easily power a red LED for several minutes when charged for only 20 s even under a bent state, indicating the great potential in future flexible energy storage devices.
更多
查看译文
关键词
Scalable,Three-dimensional,Ni3P-based,Network structure,Flexible energy storage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要