On the Correlation between Total Condensate and Moist Heating in Tropical Cyclones and Applications for Diagnosing Intensity

MONTHLY WEATHER REVIEW(2019)

引用 5|浏览9
暂无评分
摘要
While the transfer of moist enthalpy from the ocean to the atmosphere is the fundamental energy source for tropical cyclones, the release of latent heat in moist convection is the mechanism by which this energy is converted into the kinetic and potential energy of these storms. Most observational estimates of this heat release rely on satellite estimates of rain rate. Here, examination of five high-resolution numerical simulations of tropical cyclones reveals that there is a close correlation between the total condensate and the total heating, even though the former quantity is an amount and the latter is a rate. This relationship is due to the fact that for condensate to be sustained at large values, it must be rapidly replaced by new condensate and associated latent heating. Total condensate and total rain rate within fixed radial distances such as 111 km also show good correlations with the current intensity of the storm, but surprisingly, high values of condensate at high altitudes and close to the storm center are not good predictors of imminent intensification. These relationships are confirmed with an additional ensemble of 270 idealized simulations of tropical cyclones with varying sizes and intensities. Finally, simulated measurements of total condensate are computed from narrow swaths modeled after the cloud profiling radar on the CloudSat satellite. Despite their narrow footprint and the fact that they rarely cut through the exact center of the cyclone, these estimates of total condensate also show a useful correlation with current intensity.
更多
查看译文
关键词
Atmosphere,Tropical cyclones,Radars,Radar observations,Remote sensing,Short-range prediction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要