Evolutionarily Optimized Electromagnetic Sensor Measurements for Robust Surgical Navigation

IEEE Sensors Journal(2019)

引用 7|浏览25
暂无评分
摘要
Miniaturized electromagnetic sensors are increasingly introduced to navigate surgical instruments to anatomical targets during minimally invasive procedures, such as endoscopic surgery. These sensors are usually attached at the distal tips of surgical instruments to track their three-dimensional motion represented by the position and orientation in six degrees of freedom. Unfortunately, these sensors suffer from inaccurate measurements and jitter errors due to the patient movement (e.g., respiratory motion) and magnetic field distortion. This paper proposes an evolutionary computing strategy to optimize the sensor measurements and improve the tracking accuracy of surgical navigation. We modified two evolutionary computation algorithms and proposed adaptive particle swarm optimization (APSO) and observation-boosted differential evolution (OBDE) to enhance the navigation accuracy. The experimental results demonstrate that our modified algorithms to evolutionarily optimize electromagnetic sensor measurements can critically reduce the tracking error from 4.8 to 2.9 mm. In particular, OBDE outperforms APSO for electromagnetic endoscopic navigation.
更多
查看译文
关键词
Surgery,Navigation,Magnetic sensors,Particle swarm optimization,Electromagnetics,Magnetic resonance imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要