Protease-associated import systems are widespread in Gram-negative bacteria.

PLOS GENETICS(2019)

引用 15|浏览28
暂无评分
摘要
Bacteria have evolved sophisticated uptake machineries in order to obtain the nutrients required for growth. Gram-negative plant pathogens of the genus Pectobacterium obtain iron from the protein ferredoxin, which is produced by their plant hosts. This iron-piracy is mediated by the ferredoxin uptake system (Fus), a gene cluster encoding proteins that transport ferredoxin into the bacterial cell and process it proteolytically. In this work we show that gene clusters related to the Fus are widespread in bacterial species. Through structural and biochemical characterisation of the distantly related Fus homologues YddB and PqqL from Escherichia coli, we show that these proteins are analogous to components of the Fus from Pectobacterium. The membrane protein YddB shares common structural features with the outer membrane ferredoxin transporter FusA, including a large extracellular substrate binding site. PqqL is an active protease with an analogous periplasmic localisation and iron-dependent expression to the ferredoxin processing protease FusC. Structural analysis demonstrates that PqqL and FusC share specific features that distinguish them from other members of the M16 protease family. Taken together, these data provide evidence that protease associated import systems analogous to the Fus are widespread in Gram-negative bacteria. Author summary To grow and cause infection bacteria must obtain essential nutrients from their environment or host. The element iron is one such nutrient and is often contained inside proteins, the building blocks of hosts cells. Bacteria that cause disease in plants are able to extract iron from plant proteins, by importing the protein and cutting it up once inside the bacterial cell. While it was known that specific bacteria that infect plants can do this, it was unclear if other bacteria that infect humans and animals are also able to import host proteins. In this work we analysed the genetic sequences of bacteria and found that genes responsible for importing and processing proteins are widespread in bacteria that cause disease in humans, animals and plants. We analysed the structure and chemistry of the protein products of these genes and found that they possess characteristics that are necessary and sufficient for importing and processing proteins. Our conclusion from this work is that the ability to import host proteins to gain nutrients is common in bacteria.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要