Renas: Reinforced Evolutionary Neural Architecture Search

2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019)(2019)

引用 137|浏览220
暂无评分
摘要
Neural Architecture Search (NAS) is an important yet challenging task in network design due to its high computational consumption. To address this issue, we propose the Reinforced Evolutionary Neural Architecture Search (RENAS), which is an evolutionary method with reinforced mutation for NAS. Our method integrates reinforced mutation into an evolution algorithm for neural architecture exploration, in which a mutation controller is introduced to learn the effects of slight modifications and make mutation actions. The reinforced mutation controller guides the model population to evolve efficiently. Furthermore, as child models can inherit parameters from their parents during evolution, our method requires very limited computational resources. In experiments, we conduct the proposed search method on CIFAR-10 and obtain a powerful network architecture, RENASNet. This architecture achieves a competitive result on CIFAR- 10. The explored network architecture is transferable to ImageNet and achieves a new state-of-the-art accuracy, i.e., 75.7% top-1 accuracy with 5.36M parameters on mobile ImageNet. We further test its performance on semantic segmentation with DeepLabv3 on the PASCAL VOC. RENASNet outperforms MobileNet-v1, MobileNet-v2 and NASNet. It achieves 75.83% mIOU without being pretrained on COCO.
更多
查看译文
关键词
Deep Learning,Recognition: Detection,Categorization,Retrieval
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要