Geochemistry, in-situ Sr-Nd-Hf-O isotopes, and mineralogical constraints on origin and magmatic-hydrothermal evolution of the Yulong porphyry Cu Mo deposit, Eastern Tibet

Gondwana Research(2019)

引用 18|浏览67
暂无评分
摘要
The giant Yulong porphyry CuMo deposit was formed in postsubduction setting in eastern Tibet. Origin of the ore-related Yulong intrusion remains a matter of debate. This study presents new whole-rock major and trace element geochemistry, in-situ apatite SrNd and zircon HfO isotopes, and mineralogical chemistry of the Yulong intrusion. Least-altered samples from the Yulong intrusion have high SiO2 (66.3–69.5 wt%) and Al2O3 (14.9–15.5 wt%) contents, high La/Yb (36.4–68.0) and Sr/Y (46.0–76.3) ratios, and low MgO (0.63–1.24 wt%) and Cr (<30 ppm) contents, similar to adakitic rocks deriving from thick juvenile lower crust. They are enriched in large ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs), and show listric REE patterns. In-situ apatite SrNd isotopes show limited variations ((87Sr/86Sr)i = 0.7060–0.7068, εNd(t) = −4.8–0.2), which plot between Paleo-Tethys ocean-related arc magmas and the ancient crust in eastern Tibet. Zircon grains from this study and published studies have mostly positive yet variable εHf(t) values (−20.6 to +12.2) and young Hf model ages that overlap those of the Paleo-Tethys ocean-related arc magmas. The above Sr-Nd-Hf isotopes, together with the elevated zircon δ18O values (6.4 to 9.3‰) and arc-like trace element patterns, collectively suggest that the Yulong intrusion may have originated from partial melting of juvenile lower arc crust related to the subduction of the Paleo-Tethys ocean, with incorporation of a small amount of ancient crustal materials.
更多
查看译文
关键词
Yulong porphyry CuMo deposit,Sr-Nd-Hf-O isotopes,Magma origin,Fluid exsolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要