WeChat Mini Program
Old Version Features
Activate VIP¥0.73/day
Master AI Research

Deep Teaching: Materials for Teaching Machine and Deep Learning

5TH INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD'19)(2019)

HTW Berlin Univ Appl Sci

Cited 11|Views8
Abstract
Machine learning (ML) is considered to be hard because it is relatively complicated in comparison to other topics of computer science. The reason is that machine learning is based heavily on mathematics and abstract concepts. This results in an entry barrier for students: Most students want to avoid such difficult topics in elective courses or self-study. In the project Deep. Teaching we address these issues: We motivate by selected applications and support courses as well as self-study by giving practical exercises for different topics in machine learning. The teaching material, provided as jupyter notebooks, consists of theoretical and programming sections. For didactical reasons, we designed programming exercises such that the students have to deeply understand the concepts and principles before they can start to implement a solution. We provide all necessary boilerplate code such that the students can primarily focus on the educational objectives of the exercises. We used different ways to give feedback for self-study: obscured solutions for mathematical results, software tests with assert statements, and graphical illustrations of sample solutions. All of the material is published under a permissive license. Developing jupyter notebooks collaboratively for educational purposes poses some problems. We address these issues and provide solutions/best practices.
More
Translated text
Key words
Machine learning,education,jupyter notebook,programming exercise,collaborative development
PDF
Bibtex
收藏
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined