Power Distribution Insulators Classification Using Image Hybrid Deep Learning
european signal processing conference(2019)
Abstract
The Overhead Power Distribution Lines present a wide range of insulator components, which have different shapes and types of building materials. These components are usually exposed to weather and operational conditions that may cause deviations in their shapes, colors or textures. These changes might hinder the development of automatic systems for visual inspection. In this perspective, this work presents a robust methodology for image classification, which aims at the efficient distribution insulator class identification, regardless of its degradation level. This work can be characterized by the following steps: implementation of Convolutional Neural Network (CNN); transfer learning; attribute vector acquisition and design of hybrid classifier architectures to improve the discrimination efficiency. In summary, a previously trained CNN goes through a line tuning stage for later use as a feature extractor for training a new set of classifiers. A comparative study was conducted to identify which classifier architecture obtained the best discrimination performance for non-conforming components. The proposed methodology showed a significant improvement in classification performance, obtaining 95% overall accuracy in the identification of non-conforming component classes.
MoreTranslated text
Key words
distribution insulators, convolutional neural network (CNN), transfer learning, hybrid classifiers
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined