Highly efficient antimicrobial ceramics based on electrically charged interfaces.

ACS applied materials & interfaces(2019)

引用 5|浏览17
暂无评分
摘要
The increasing threat of multidrug-resistant microorganisms is a cause for worldwide concern. This motivates a necessity to discover new antimicrobial agents or new mechanisms for microorganism eradication, different from those currently used. Here, we report an effective antibacterial ceramic glaze that combines different bactericide mechanisms. Specifically, the used methodology of the glaze results in glass-free edge crystallizations of feldspar structures at the ceramic surface. A combination of Rutherford Backscattering Spectroscopy (RBS), Scanning Electron Microscopy (SEM) and Raman Microscopy is used in order to determine the chemical elements and crystallizations at the ceramic surface. Moreover, Kelvin Probe Force Microscopy (KPFM) demonstrates that the presence of glass-free edges in feldspar crystals (semiconductor phase) on a glass matrix (insulator phase) promotes the formation of Semiconductor-Insulator Interface barriers. These barriers act as reservoirs of electric charge producing a discharge exceeding the microorganism membrane breakdown value. Furthermore, the surface crystallizations account for the formation of a micro-roughness that limits biofilm formation. Both factors result in high antibacterial activity in the range of R > 4 for E. Coli and E. Aureus. This approach opens new possibilities to attain bactericidal surfaces and to understand the role of physical interaction as a main antimicrobial mechanism.
更多
查看译文
关键词
ceramic tile,antimicrobial properties,feldspar crystallizations,surface charge,physical mechanisms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要