Modulation of inhibitory function in the primary somatosensory cortex and temporal discrimination threshold induced by acute aerobic exercise.

Behavioural brain research(2019)

引用 6|浏览15
暂无评分
摘要
Acute aerobic exercise beneficially affects brain function. The effect of acute aerobic exercise on the inhibitory mechanism of the primary somatosensory cortex (S1) and somatosensory function remains unclear. We investigated whether acute aerobic exercise modulates S1 inhibitory function and somatosensory function. In Experiment 1, we measured somatosensory evoked potentials (SEP) and paired-pulse inhibition (PPI) in 15 healthy right-handed participants. The right median nerve underwent electrical stimulation (ES). Interstimulus intervals were 5 ms, 30 ms, and 100 ms. In Experiment 2, we assessed the somatosensory function by using a somatosensory temporal discrimination task. Single or paired ES was applied to the distal phalanx of the right index finger. Both the experiments involved three sessions: 20 min of moderate-intensity exercise, 30 min of low-intensity exercise, and 30 min of seated rest. Before and after each session, PPI and somatosensory temporal discrimination task performance were measured. The N20 latency was significantly shortened immediately after moderate exercise. The SEP amplitude was not modulated in any session. The PPI at 30 ms (PPI_30ms) significantly decreased 20 min after moderate exercise, whereas the PPI at 5 ms (PPI_5ms) and PPI at 100 ms (PPI_100ms) did not change. The 50% and 75% thresholds and reaction time did not improve in any session. We found negative relationships between the change in PPI_5ms and the change in the 75% threshold under low-intensity exercise condition. Thus, acute aerobic exercise modulated S1 inhibitory function depending on exercise intensity. The exercise-induced change in PPI was associated with the change in temporal discrimination.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要