Cellular Uptake, Stability, and Safety of Hollow Carbon Sphere-Protected Fe₃O₄ Nanoparticles.

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY(2020)

引用 5|浏览10
暂无评分
摘要
Magnetic iron oxide (Fe3O4) nanoparticles (NPs) have attracted extensive attentions in biomedical fields such as magnetic resonance imaging (MRI). However, the instability and unfavorable dispersity of bare Fe3O4 NPs is a challenge for biomedical applications. Herein, we proposed a strategy using hollow carbon sphere (HCS) as a shell structure to endow Fe3O4 NPs better stability, dispersity, as well as biocompatibility. To verify intracellular behaviors and biosafety of HCS-decorated Fe3O4 nanoparticles (Fe3O4@HCS NPs), the assessment of cellular effects of these NPs based on synchrotron radiation-based techniques were done to explore detailed interaction between Fe3O4@HCS NPs and liver cells, HepG2. We found that a large number of NPs were internalized by cells in a time-dependent manner determined by inductively coupled plasma mass spectrometry (ICP-MS), which was further supported by intracellular accumulation of iron via X-ray fluorescence (XRF) imaging. Moreover, confocal imaging showed that these NPs mainly located in the lysosomes where they remained stable and undissolved within 72 hours, which was verified by chemical form characterization of iron via Fe K-edge X-ray adsorption near edge structure (XANES). With the coating shell of HCS, the release of iron ions was prevented even in acidic lysosome and the integrity of lysosomal membrane remained unchanged during the storage of NPs. As a result, Fe3O4@HCS NPs exhibited low level of oxidative stress and induced negligible cytotoxicity towards HepG2 cells. Based on the powerful techniques, we demonstrated that the carbon outer layer provides a physical barrier that helps remain excellent properties of magnetic Fe3O4 NPs and good dispersity, chemical stability, as well as biocompatibility for potential applications in biomedical fields.
更多
查看译文
关键词
Magnetic Fe3O4 Nanoparticles,Hollow Carbon Nanospheres,Chemical Forms,Biosafety Assessment,X-ray Fluorescence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要