Nod-Cc: A Hybrid Cbr-Cnn Architecture For Novel Object Discovery

CASE-BASED REASONING RESEARCH AND DEVELOPMENT, ICCBR 2019(2019)

引用 6|浏览9
暂无评分
摘要
Deep Learning methods have shown a rapid increase in popularity due to their state-of-the-art performance on many machine learning tasks. However, these methods often rely on extremely large datasets to accurately train the underlying machine learning models. For supervised learning techniques, the human effort required to acquire, encode, and label a sufficiently large dataset may add such a high cost that deploying the algorithms is infeasible. Even if a sufficient workforce exists to create such a dataset, the human annotators may differ in the quality, consistency, and level of granularity of their labels. Any impact this has on the overall dataset quality will ultimately impact the potential performance of an algorithm trained on it. This paper partially addresses this issue by providing an approach, called NOD-CC, for discovering novel object types in images using a combination of Convolutional Neural Networks (CNNs) and Case-Based Reasoning (CBR). The CNN component labels instances of known object types while deferring to the CBR component to identify and label novel, or poorly understood, object types. Thus, our approach leverages the state-of-the-art performance of CNNs in situations where sufficient high-quality training data exists, while minimizing its limitations in data-poor situations. We empirically evaluate our approach on a popular computer vision dataset and show significant improvements to object classification performance when full knowledge of potential class labels is not known in advance.
更多
查看译文
关键词
Deep learning, Novel object discovery, Computer vision, Convolutional Neural Networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要