Trend filtering – I. A modern statistical tool for time-domain astronomy and astronomical spectroscopy

arxiv(2019)

引用 14|浏览35
暂无评分
摘要
The problem of denoising a 1D signal possessing varying degrees of smoothness is ubiquitous in time-domain astronomy and astronomical spectroscopy. For example, in the time domain, an astronomical object may exhibit a smoothly varying intensity that is occasionally interrupted by abrupt dips or spikes. Likewise, in the spectroscopic setting, a noiseless spectrum typically contains intervals of relative smoothness mixed with localized higher frequency components such as emission peaks and absorption lines. In this work, we present trend filtering, a modern non-parametric statistical tool that yields significant improvements in this broad problem space of denoising spatially heterogeneous signals. When the underlying signal is spatially heterogeneous, trend filtering is superior to any statistical estimator that is a linear combination of the observed data – including kernel smoothers, LOESS, smoothing splines, Gaussian process regression, and many other popular methods. Furthermore, the trend filtering estimate can be computed with practical and scalable efficiency via a specialized convex optimization algorithm, e.g. handling sample sizes of n ≳ 10 7 within a few minutes. In a companion paper, we explicitly demonstrate the broad utility of trend filtering to observational astronomy by carrying out a diverse set of spectroscopic and time-domain analyses.
更多
查看译文
关键词
methods: statistical,techniques: photometric,techniques: spectroscopic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要