Active Learning on Dynamic Clustering for Drift Compensation in an Electronic Nose System.

SENSORS(2019)

引用 13|浏览46
暂无评分
摘要
Drift correction is an important concern in Electronic noses (E-nose) for maintaining stable performance during continuous work. A large number of reports have been presented for dealing with E-nose drift through machine-learning approaches in the laboratory. In this study, we aim to counter the drift effect in more challenging situations in which the category information (labels) of the drifted samples is difficult or expensive to obtain. Thus, only a few of the drifted samples can be used for label querying. To solve this problem, we propose an innovative methodology based on Active Learning (AL) that selectively provides sample labels for drift correction. Moreover, we utilize a dynamic clustering process to balance the sample category for label querying. In the experimental section, we set up two E-nose drift scenarios-a long-term and a short-term scenario-to evaluate the performance of the proposed methodology. The results indicate that the proposed methodology is superior to the other state-of-art methods presented. Furthermore, the increasing tendencies of parameter sensitivity and accuracy are analyzed. In addition, the Label Efficiency Index (LEI) is adopted to measure the efficiency and labelling cost of the AL methods. The LEI values indicate that our proposed methodology exhibited better performance than the other presented AL methods in the online drift correction of E-noses.
更多
查看译文
关键词
active learning,drift counteraction,dynamic clustering,electronic nose
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要