Constraints for stellar electron-capture rates on $^{86}$Kr via the $^{86}$Kr($t$,$^{3}$He$+\gamma$)$^{86}$Br reaction and the implications for core-collapse supernovae

Titus R., Ney E. M.,Zegers R. G. T.,Bazin D., Belarge J.,Bender P. C.,Brown B. A.,Campbell C. M., Elman B., Engel J.,Gade A., Gao B.,Kwan E., Lipschutz S., Longfellow B.,Lunderberg E., Mijatovic T.,Noji S.,Pereira J., Schmitt J., Sullivan C., Weisshaar D.,Zamora J. C.

arxiv(2019)

引用 0|浏览49
暂无评分
摘要
In the late stages of stellar core-collapse, prior to core bounce, electron captures on medium-heavy nuclei drive deleptonization and simulations require the use of accurate reaction rates. Nuclei with neutron number near $N=50$, just above atomic number $Z=28$, play an important role, but rates used in astrophysical simulations rely primarily on a relatively simple single-state approximation. In order to improve the accuracy of astrophysical simulations, experimental data are needed to test the electron-capture rates and to guide the development of better theoretical models. This work presents the results of the $^{86}$Kr($t$,$^{3}$He+$\gamma$) experiment at the NSCL, from which an upper limit for the Gamow-Teller strength up to an excitation energy in $^{86}$Br of 5 MeV is extracted. The derived upper limit for the electron-capture rate on $^{86}$Kr indicates that the rate estimated through the single-state approximation is too high and that rates based on Gamow-Teller strengths estimated in shell-model and QRPA calculations are more accurate. The QRPA calculations tested in this manner were used for estimating the electron capture rates for 78 isotopes near $N=50$ and above $Z=28$. The impact of using these new electron-capture rates in simulations of supernovae instead of the rates based on the single-state approximation is investigated, indicating a significant reduction in the deleptonization that affects multi-messenger signals, such as the emission of neutrinos and gravitational waves.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要