A novel hybrid deep learning scheme for four-class motor imagery classification.

JOURNAL OF NEURAL ENGINEERING(2019)

引用 103|浏览8
暂无评分
摘要
Objective. Learning the structures and unknown correlations of a motor imagery electroencephalogram (MI-EEG) signal is important for its classification. It is also a major challenge to obtain good classification accuracy from the increased number of classes and increased variability from different people. In this study, a four-class MI task is investigated. Approach. An end-to-end novel hybrid deep learning scheme is developed to decode the MI task from EEG data. The proposed algorithm consists of two parts: a. A one-versus-rest filter bank common spatial pattern is adopted to preprocess and pre-extract the features of the four-class MI signal. b. A hybrid deep network based on the convolutional neural network and long-term short-term memory network is proposed to extract and learn the spatial and temporal features of the MI signal simultaneously. Main results. The main contribution of this paper is to propose a hybrid deep network framework to improve the classification accuracy of the four-class MI-EEG signal. The hybrid deep network is a subject-independent shared neural network, which means it can be trained by using the training data from all subjects to form one model. Significance. The classification performance obtained by the proposed algorithm on brain-computer interface (BCI) competition IV dataset 2a in terms of accuracy is 83% and Cohen's kappa value is 0.80. Finally, the shared hybrid deep network is evaluated by every subject respectively, and the experimental results illustrate that the shared neural network has satisfactory accuracy. Thus, the proposed algorithm could be of great interest for real-life BCIs.
更多
查看译文
关键词
brain-computer interface,four-class motor imagery,OVR-FBCSP,convolutional neural network,long short-term memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要