Statistical ZAP Arguments.

IACR Cryptology ePrint Archive(2019)

引用 25|浏览157
暂无评分
摘要
Dwork and Naor (FOCS'00) first introduced and constructed two message public coin witness indistinguishable proofs (ZAPs) for NP based on trapdoor permutations. Since then, ZAPs have also been obtained based on the decisional linear assumption on bilinear maps, and indistinguishability obfuscation, and have proven extremely useful in the design of several cryptographic primitives. However, all known constructions of two-message public coin (or even publicly verifiable) proof systems only guarantee witness indistinguishability against computationally bounded verifiers. In this paper, we construct the first public coin two message witness indistinguishable (WI) arguments for NP with statistical privacy, assuming quasi-polynomial hardness of the learning with errors (LWE) assumption. We also show that the same protocol has a super-polynomial simulator (SPS), which yields the first public-coin SPS statistical zero knowledge argument. Prior to this, there were no known constructions of two-message publicly verifiable WI protocols under lattice assumptions, even satisfying the weaker notion of computational witness indistinguishability.
更多
查看译文
关键词
statistical zap arguments
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要