A review of cable-driven rehabilitation devices.

Disability and rehabilitation. Assistive technology(2020)

引用 40|浏览17
暂无评分
摘要
To conduct a survey on the research and development of cable-driven rehabilitation devices (CDRDs). This review searches in the databases of PubMed, IEEE Xplore Digital Library, Science Direct, and Google Scholar using various combinations of the following keywords: cable, wire, rehabilitation, assistance, therapy, training, robot, elastic, and pneumatic. Searches in the above databases for references cited by the above-searched references are also conducted to include a larger context of CDRDs. CDRDs are classified into four categories, namely, serial exoskeleton-based, parallel exoskeleton-based, serial end-effector-based, and parallel end-effector-based CDRDs. Each category of CDRDs are further grouped based on the part of the human body to be rehabilitated. All four categories of CDRDs are examined and compared and their advantages and shortcomings are discussed based on popular rehabilitation requirements on weight, adaptability, versatility, misalignment, and safety. Open issues of CDRDs are also discussed. Each category of CDRDs has its own advantages and shortcomings. The selection of a CDRD highly depends on the specific application. Regarding the convenience of setting up a CDRD for rehabilitation, parallel CDRDs usually have better adaptability than serial ones. However, uncertainties come with parallel CDRDs, which makes the control of parallel CDRDs more challenging. Moreover, the strategy of inherent safety has a great potential to further improve the safety of CDRDs. Implications for rehabilitation CDRDs (and general RRDs) can deliver high-intensity training while therapists usually cannot. With up-to-date human-robot interaction techniques (e.g., virtual reality), CDRDs are more interesting and motivating to trainees than conventional manual rehabilitation therapies. CDRDs also provide financial benefits in the long-run. Currently existing RRDs available for clinical practice are mainly designed for the rehabilitation of shoulders, elbows, and knees. Parallel exoskeleton-based CDRDs can also be used for the rehabilitation of many other parts of trainees. Thus, CDRDs extend the coverage of RRDs in rehabilitation. Owing to their simple structures and light weights, CDRDs can be portable and used for rehabilitation at home. In this way, CDRDs can improve the duration and intensity of rehabilitation for those with limited access to rehabilitation institutes. As well known, the higher intensity of training leads to a higher rate of recovery.
更多
查看译文
关键词
Cable-driven,review,robotic rehabilitation device
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要