Genome-scale CRISPR activation screening identifies a role of ELAVL2-CDKN1A axis in paclitaxel resistance in esophageal squamous cell carcinoma.

AMERICAN JOURNAL OF CANCER RESEARCH(2019)

引用 33|浏览74
暂无评分
摘要
Neoadjuvant chemotherapy (NAC) may provide survival benefits for patients with advanced esophageal squamous cell carcinoma. However, tumor cells can display primary or secondary resistance to paclitaxel (PTX), a primary component of induction chemotherapy regimen. To identify genes capable of conveying PTX resistance, we performed a genome-wide CRISPR transcriptional activation library in human KYSE-180 cells. High throughput next generation sequencing was further applied to establish the phenotype-to-genotype relationship. Our highest-ranking hits are CDKN1A, TSPAN4, ELAVL2, JUNB and PAAF1. We generated evidence that esophageal tumors with high CDKN1A, ELAVL2 and TSPAN4 levels, quantified using qRT-PCR and Western blot assays, showed poorer chemotherapy response. Higher expression levels of TSPAN4 and ELAVL2 protein are independent risk factors for poor chemotherapy response in ESCC patients. We then found that overexpression of CDKN1A, ELAVL2 or TSPAN4 in ESCC cell lines significantly promoted the resistance to PTX by inhibiting cell apoptosis. Interestingly, ESCC cells overexpressed CDKN1A, ELAVL2 or TSPAN4 also acquired resistance to cisplatin (DDP). This phenomenon may be explained by cross-resistance of chemotherapy. We additionally found an association between ELAVL2 and CDKN1A, which may be regarded as the upstream and downstream factors that synergistically involved in the regulation of chemo-resistance in ESCC. Therefore, our study demonstrated that the genome-wide CRISPR activation library is a powerful strategy for the discovery of chemo-resistant genes critical for ESCC and we reported the first evidence that the ELAVL2-CDKN1A axis may be an important mechanism involved in chemo-resistance in ESCC.
更多
查看译文
关键词
Esophageal squamous cell carcinoma,CRISPR library,neoadjuvant chemotherapy,drug-resistant genes,high throughput
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要