Towards A Two-Layer Framework For Verifying Autonomous Vehicles

NASA FORMAL METHODS (NFM 2019)(2019)

引用 14|浏览11
暂无评分
摘要
Autonomous vehicles rely heavily on intelligent algorithms for path planning and collision avoidance, and their functionality and dependability can be ensured through formal verification. To facilitate the verification, it is beneficial to decouple the static high-level planning from the dynamic functions like collision avoidance. In this paper, we propose a conceptual two-layer framework for verifying autonomous vehicles, which consists of a static layer and a dynamic layer. We focus concretely on modeling and verifying the dynamic layer using hybrid automata and uppaal smc, where a continuous movement of the vehicle as well as collision avoidance via a dipole flow field algorithm are considered. In our framework, decoupling is achieved by separating the verification of the vehicle's autonomous path planning from that of the vehicle autonomous operation in its continuous dynamic environment. To simplify the modeling process, we propose a pattern-based design method, where patterns are expressed as hybrid automata. We demonstrate the applicability of the dynamic layer of our framework on an industrial prototype of an autonomous wheel loader.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要