A Sparse and Decomposed Particle Swarm Optimization for Inferring Gene Regulatory Networks based on Fuzzy Cognitive Maps

JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY(2019)

引用 1|浏览5
暂无评分
摘要
Inferring gene regulatory networks (GRNs) is vital to understand the complex cellular processes and reveal the regulatory mechanisms among genes. Although various methods have been developed, more accurate algorithms which can control the sparseness of GRNs still need to be developed. In this work, we model GRNs by fuzzy cognitive maps (FCMs), and a node in an FCM means a gene. Then, a new sparse and decomposed particle swarm optimization, termed as SDPSOFCM-GRN, is proposed to train FCMs, which employs the least absolute shrinkage and selection operator (Lasso) to control the network sparseness with a decomposed strategy. In the experiments, the performance of SDPSOFCM-GRN is validated on synthetic data and the well-known benchmark DREAM3 and DREAM4. The results show that SDPSOFCM-GRN can well control the sparseness of GRNs, and infer directed GRNs with high accuracy and efficiency.
更多
查看译文
关键词
Gene regulatory networks,fuzzy cognitive maps,particle swarm optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要