Mathematical model studies of the comprehensive generation of major and minor phyllotactic patterns in plants with a predominant focus on orixate phyllotaxis.

PLOS COMPUTATIONAL BIOLOGY(2019)

引用 21|浏览13
暂无评分
摘要
Plant leaves are arranged around the stem in a beautiful geometry that is called phyllotaxis. In the majority of plants, phyllotaxis exhibits a distichous, Fibonacci spiral, decussate, or tricussate pattern. To explain the regularity and limited variety of phyllotactic patterns, many theoretical models have been proposed, mostly based on the notion that a repulsive interaction between leaf primordia determines the position of primordium initiation. Among them, particularly notable are the two models of Douady and Couder (alternate-specific form, DC1; more generalized form, DC2), the key assumptions of which are that each leaf primordium emits a constant power that inhibits new primordium formation and that this inhibitory effect decreases with distance. It was previously demonstrated by computer simulations that any major type of phyllotaxis can occur as a self-organizing stable pattern in the framework of DC models. However, several phyllotactic types remain unaddressed. An interesting example is orixate phyllotaxis, which has a tetrastichous alternate pattern with periodic repetition of a sequence of different divergence angles: 180 degrees, 90 degrees, -180 degrees, and -90 degrees. Although the term orixate phyllotaxis was derived from Orixa japonica, this type is observed in several distant taxa, suggesting that it may reflect some aspects of a common mechanism of phyllotactic patterning. Here we examined DC models regarding the ability to produce orixate phyllotaxis and found that model expansion via the introduction of primordial age-dependent changes of the inhibitory power is absolutely necessary for the establishment of orixate phyllotaxis. The orixate patterns generated by the expanded version of DC2 (EDC2) were shown to share morphological details with real orixate phyllotaxis. Furthermore, the simulation results obtained using EDC2 fitted better the natural distribution of phyllotactic patterns than did those obtained using the previous models. Our findings imply that changing the inhibitory power is generally an important component of the phyllotactic patterning mechanism. Author summary Phyllotaxis, the beautiful geometry of plant-leaf arrangement around the stem, has long attracted the attention of researchers of biological-pattern formation. Many mathematical models, as typified by those of Douady and Couder (alternate-specific form, DC1; more generalized form, DC2), have been proposed for phyllotactic patterning, mostly based on the notion that a repulsive interaction between leaf primordia spatially regulates primordium initiation. In the framework of DC models, which assume that each primordium emits a constant power that inhibits new primordium formation and that this inhibitory effect decreases with distance, the major types (but not all types) of phyllotaxis can occur as stable patterns. Orixate phyllotaxis, which has a tetrastichous alternate pattern with a four-cycle sequence of the divergence angle, is an interesting example of an unaddressed phyllotaxis type. Here, we examined DC models regarding the ability to produce orixate phyllotaxis and found that model expansion by introducing primordial age-dependent changes of the inhibitory power is absolutely necessary for the establishment of orixate phyllotaxis. The simulation results obtained using the expanded version of DC2 (EDC2) fitted well the natural distribution of phyllotactic patterns. Our findings imply that changing the inhibitory power is generally an important component of the phyllotactic patterning mechanism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要