Adenylyl cyclase 5-generated cAMP controls cerebral vascular reactivity during diabetic hyperglycemia.

JOURNAL OF CLINICAL INVESTIGATION(2019)

引用 37|浏览32
暂无评分
摘要
Elevated blood glucose (hyperglycemia) is a hallmark metabolic abnormality in diabetes. Hyperglycemia is associated with protein kinase A-dependent (PKA-dependent) stimulation of L-type Ca2+ channels in arterial myocytes resulting in increased vasoconstriction. However, the mechanisms by which glucose activates PKA remain unclear. Here, we showed that elevating extracellular glucose stimulates cAMP production in arterial myocytes, and that this was specifically dependent on adenylyl cyclase 5 (AC5) activity. Super-resolution imaging suggested nanometer proximity between subpopulations of AC5 and the L-type Ca2+ channel pore-forming subunit Ca(V)1.2. In vitro, in silico, ex vivo, and in vivo experiments revealed that this close association is critical for stimulation of L-type Ca2+ channels in arterial myocytes and increased myogenic tone upon acute hyperglycemia. This pathway supported the increase in L-type Ca2+ channel activity and myogenic tone in 2 animal models of diabetes. Our collective findings demonstrate a unique role for AC5 in PKA-dependent modulation of L-type Ca2+ channel activity and vascular reactivity during acute hyperglycemia and diabetes.
更多
查看译文
关键词
Calcium channels,Cell Biology,Cyclases,Diabetes,Vascular Biology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要