Distinct fibroblast subsets drive inflammation and damage in arthritis

NATURE(2019)

引用 615|浏览80
暂无评分
摘要
The identification of lymphocyte subsets with non-overlapping effector functions has been pivotal to the development of targeted therapies in immune-mediated inflammatory diseases (IMIDs) 1 , 2 . However, it remains unclear whether fibroblast subclasses with non-overlapping functions also exist and are responsible for the wide variety of tissue-driven processes observed in IMIDs, such as inflammation and damage 3 – 5 . Here we identify and describe the biology of distinct subsets of fibroblasts responsible for mediating either inflammation or tissue damage in arthritis. We show that deletion of fibroblast activation protein-α (FAPα) + fibroblasts suppressed both inflammation and bone erosions in mouse models of resolving and persistent arthritis. Single-cell transcriptional analysis identified two distinct fibroblast subsets within the FAPα + population: FAPα + THY1 + immune effector fibroblasts located in the synovial sub-lining, and FAPα + THY1 − destructive fibroblasts restricted to the synovial lining layer. When adoptively transferred into the joint, FAPα + THY1 − fibroblasts selectively mediate bone and cartilage damage with little effect on inflammation, whereas transfer of FAPα + THY1 + fibroblasts resulted in a more severe and persistent inflammatory arthritis, with minimal effect on bone and cartilage. Our findings describing anatomically discrete, functionally distinct fibroblast subsets with non-overlapping functions have important implications for cell-based therapies aimed at modulating inflammation and tissue damage.
更多
查看译文
关键词
Chronic inflammation,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要