Label Prediction Framework For Semi-Supervised Cross-Modal Retrieval

2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)(2020)

引用 0|浏览0
暂无评分
摘要
Cross-modal data matching refers to retrieval of data from one modality, when given a query from another modality. In general, supervised algorithms achieve better retrieval performance compared to their unsupervised counterpart, as they can learn better representative features by leveraging the available label information. However, this comes at the cost of requiring huge amount of labeled examples, which may not always be available. In this work, we propose a novel framework in a semi-supervised cross-modal retrieval setting, which can predict the labels of the unlabeled data using complementary information from different modalities. The proposed framework can be used as an add-on with any baseline cross-modal algorithm to give significant performance improvement, even in case of limited labeled data. Extensive evaluation using several baseline algorithms across three different datasets show the effectiveness of our label prediction framework.
更多
查看译文
关键词
Cross-modal retrieval,semi-supervised learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要