Snail1-dependent cancer-associated fibroblasts induce epithelial-mesenchymal transition in lung cancer cells via exosomes.

QJM-AN INTERNATIONAL JOURNAL OF MEDICINE(2019)

引用 71|浏览11
暂无评分
摘要
Background: Epithelial-mesenchymal transition (EMT) is an essential component of metastasis. Our previous study demonstrated that cancer-associated fibroblasts (CAFs) induce EMT in lung cancer cells. In recent years, many studies have demonstrated that CAFs induce metastasis and drug resistance in cancer cells via exosomes. Aim: We sought to discover the mechanism underlying how CAFs induce EMT in lung cancer cells, unveiling the role of exosomes in lung cancer progression. Design: We cultured lung cancer cell (i) with control medium, normal fibroblasts (NFs) or CAFs; (ii) with SNAI1-transfected or NC (negative control)-transfected CAFs; (iii) with exosomes extracted from NF- or CAF-conditioned medium; (iv) with exosomes released by SNAI1 or NC-transfected CAFs; (v) with CAF-conditioned medium or exosome-depleted CAF-conditioned medium. Methods: qRT-PCR was conducted to examine the expression of CDH1 (gene of E-cadherin) and VIM (gene of Vimentin), western blotting was conducted to examine E-cadherin and vimentin levels in lung cancer cells. Results: Exosomes released by CAFs-promoted EMT in lung cancer cells. Interestingly, SNAI1 levels in exosomes secreted from CAFs were correlated with SNAI1 expression in CAFs. Furthermore, the level of SNAI1 in exosomes was crucial for inducing EMT in lung cancer cells. Finally, treatment of CAFs with GW4869, an inhibitor of exosome release, noticeably inhibited their EMT-inducing effect on recipient epithelial cells. Conclusions: The molecular mechanism underlying how CAFs induce EMT in cancer cells may be that CAFs deliver SNAI1 to recipient cancer cells via exosomes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要