Toward A Reproducible, Scalable Framework for Processing Large Neuroimaging Datasets

bioRxiv(2019)

引用 5|浏览82
暂无评分
摘要
Emerging neuroimaging datasets (collected through modalities such as Electron Microscopy, Calcium Imaging, or X-ray Microtomography) describe the location and properties of neurons and their connections at unprecedented scale, promising new ways of understanding the brain. These modern imaging techniques used to interrogate the brain can quickly accumulate gigabytes to petabytes of structural brain imaging data. Unfortunately, many neuroscience laboratories lack the computational expertise or resources to work with datasets of this size: computer vision tools are often not portable or scalable, and there is considerable difficulty in reproducing results or extending methods. We developed an ecosystem of neuroimaging data analysis pipelines that utilize open source algorithms to create standardized modules and end-to-end optimized approaches. As exemplars we apply our tools to estimate synapse-level connectomes from electron microscopy data and cell distributions from X-ray microtomography data. To facilitate scientific discovery, we propose a generalized processing framework, that connects and extends existing open-source projects to provide large-scale data storage, reproducible algorithms, and workflow execution engines. Our accessible methods and pipelines demonstrate that approaches across multiple neuroimaging experiments can be standardized and applied to diverse datasets. The techniques developed are demonstrated on neuroimaging datasets, but may be applied to similar problems in other domains.
更多
查看译文
关键词
Computational Neuroscience,Microtomography,Electron Microscopy,Workflows,Containers,Optimization,Reproducible science
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要