Effect of Fe Intermetallics on Microstructure and Properties of Al-7Si Alloys

JOM(2019)

引用 19|浏览4
暂无评分
摘要
The present work deals with the effect of iron intermetallics on the microstructure and mechanical properties of Al-7% Si alloys. Two different iron additions were made, 0.6% Fe and 2% Fe, to study the effect of iron intermetallics on Al-Si alloys. Microstructure property correlations were carried out using SEM-EDS and tensile testing of alloys. Microstructure results show that the rise in iron content significantly increased the average size, thickness and number of intermetallic particles in the alloys. Nano-indentation study shows that the iron intermetallics are too brittle compared with the primary aluminium. Moreover, the hardness and Young’s modulus of iron intermetallics are higher than those of primary aluminium. Tensile test results show that there is no significant difference in strength levels between Al-7%Si and Al-7Si-0.6Fe alloys. However, an increase in iron from 0.6% to 2% resulted in a significant decrease in tensile strength and elongation of the alloys. Two-dimensional SEM studies suggest that the increased number of needle-shaped β-phase intermetallic particles formed because of increased amounts of Fe could be the reason for early failure of the alloy. To further understand the early failure of iron-containing alloys, the fractured tensile specimens were studied using the 3D x-ray tomography technique. XCT results show that the failure in tensile testing of 2% Fe alloy was not mainly due to breaking of brittle β-phase intermetallic particles, but due to the morphology and particle-matrix interface debonding. XCT shows that the needle-shaped particles are long, sharp-edged platelets in 3D, which act as stress raisers for crack initiation and propagation along the interphase.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要